Elliptic hypergeometric combinatorics

发布日期:2018-09-25点击数:

报告人: Michael Schlosser (University of Vienna)

 

 : 2018年9月27日  上午9:00—10:00

 

 : 理科楼 LD402

 

 : In this introductory lecture I will describe some connections between elliptic hypergeometric series (a rather recent extension of basic hypergeometric series which involves theta functions) and combinatorics. A central theme here is combinatorial enumeration using elliptic weight functions. For instance,a (suitable) “elliptic enumeration” of lattice paths leads to a closed form elliptic generalization of binomial coefficients.Convolution of these elliptic binomial coefficients yields the celebrated Frenkel–Turae $_{10}V_9$ summation, an identity which is fundamental in the theory of elliptic hypergeometric series.Similarly, by suitably introducing elliptic weights in the respective classical models (such as rook theory), one can obtain elliptic generalizations of various special combinatorial numbers,including the Stirling numbers of the first and second kinds.

In my talk I will also touch on closely connected topics including elliptic commuting variables and basis transitions.

 

报告人简介: Michael Schlosser,维也纳大学教授,1996年于维也纳大学获得博士学位,他的导师Krattenthaler教授是奥地利乃至整个欧洲最为著名的组合数学家之一。他本人毕业之后有持续且高质量的科研工作,已经在Adv Math, Adv Appl Math, JMAA, JCTA, European J Combin, J Comput Appl Math等20个国际一流的组合学专业期刊或是综合性期刊发表论文近60篇。他的研究方向横跨特殊函数与q-级数、计数组合、代数组合等,同时他还担任了JMAA与Ramanujan J两个杂志的编委。

 

公司联系人:傅士硕

 

欢迎广大师生积极参与!

 

关于我们
太阳成集团tyc539的前身是始建于1929年的太阳成集团理学院和1937年建立的太阳成集团商学院,理学院是太阳成集团最早设立的三个学院之一,首任经理为数学家何鲁先生。