Converting a fraction into a decimal: a complex version

发布日期:2018-10-16点击数:

报告人: 梁景信 (香港教育大学)

 

 :2018年10月19   上午9:00--10:00

 

 :理科楼 LD202

 

 : A complex number $z=c+di$ is called a Gaussian integer if both $c$ and $d$ are integers. The quotient $\frac{z_{1}}{z_{2}}$ of two Gaussian integers $z_{1}$ and $z_{2}(\neq 0)$ is called a Gaussian rational. It can be shown that any Gaussian rational can be rewritten as $p+qi$ for some $p,q\in\mathbb{Q}$. It is known that every $z\in\mathbb{Z}$ can be expressed as $z=\sum_{i=-k}^{\infty}a_{i}b^{-i}$ where $b=-n+i$, $n$ is a positive integer, and $a_{i}\in D=\{0,1,...,|b|-1\}$. This expression (may not be unique) is called a radix expansion or representation of $z$, the number $b$ a base or radix, the set $D$ a digit set, and the elements of $D$ digits.

I   In this talk, we focus on the simplest case when $n=1$. Then $b=-1+i$ and $D=\{0,1\}$. We may think of $(b,D)$ a complex binary system. As for real rationals, we study the condition for a radix expansion of a Gaussian rational to be terminating (respectively purely recurring and mixd recurring). We also present a method for finding such a radix representation in each case.

 

报告人简介:梁景信(King-Shun Leung),  2004年博士毕业于香港中文大学数学系,现为香港教育大学数学与信息科学系副教授、副系主任;主要研究方向有:Tilings, fractals, mathematics of paper-folding, Recreational mathematics, Number theory, Problem-solving, Affective domain of mathematics education.

 

公司联系人:

 

欢迎广大师生积极参与!

关于我们
太阳成集团tyc539的前身是始建于1929年的太阳成集团理学院和1937年建立的太阳成集团商学院,理学院是太阳成集团最早设立的三个学院之一,首任经理为数学家何鲁先生。