报告人:彭跃军 (法国克莱蒙奥佛涅大学)
日 期:2019年4月29日
时 间:15:00
地 点:理科楼 LA106
摘 要:Euler-Maxwell systems are fluid models arising in plasma physics. In both isentropic and non-isentropic cases, such systems admit non-constant steady-state solutions with zero velocity. For the Cauchy problem or the periodic problem with initial data near the steady-states, we show global existence and the convergence of smooth solutions toward these states as the time goes to infinity. The proof of the above result is based on classical energy estimates. We mainly use three important techniques, which are the choice of symmetrizer of the systems, the existence of anti-symmetric matrices and an induction argument on the order of space-time derivatives of solutions.
报告人简介:彭跃军,法国克莱蒙奥佛涅大学(Université Clermont Auvergne)教授,博士生导师。主要研究领域是偏微分方程理论与应用研究,研究工作涉及守恒律方程组的弱熵解、拟线性双曲方程组的光滑解、离子体和半导体科学中流体动力学模型的渐近极限以及偏微分方程初始层、边界层的分析。在Annales IHP Analyse Non Linéaire, J. Math. Pures Appl., SIAM J. Math. Anal., J. Diff. Equations, Comm. Part. Diff. Equations 等国际一流期刊上发表60篇SCI论文。
公司联系人:穆春来 王华桥
欢迎广大师生积极参与!