日 期:2019年5月10日
时 间:14:00
地 点:理科楼 LA106
第一个报告14:00-15:00,提问5分钟,休息10分钟。
报告题目: Factorizations and estimates of Dirichlet heat kernels for non-local operators with critical killings
摘 要: In this talk I will discuss heat kernel estimates for critical perturbations of non-local operators. To be more precise, let $X$ be the reflected $\alpha$-stable process in the closure of a smooth open set $D$, and $X^D$ the process killed upon exiting $D$. We consider potentials of the form $\kappa(x)=C\delta_D(x)^{-\alpha}$ with positive $C$ and the corresponding Feynman-Kac semigroups. Such potentials do not belong to the Kato class. We obtain sharp two-sided estimates for the heat kernel of the perturbed semigroups. The interior estimates of the heat kernels have the usual $\alpha$-stable form, while the boundary decay is of the form $\delta_D(x)^p$ with non-negative $p\in [\alpha-1, \alpha)$ depending on the precise value of the constant $C$. Our result recovers the heat kernel estimates of both the censored and the killed stable process in $D$. Analogous estimates are obtained for the heat kernel of the Feynman-Kac semigroup of the $\alpha$-stable process in ${\mathbf R}^d\setminus \{0\}$ through the potential $C|x|^{-\alpha}$.
All estimates are derived from a more general result described as follows:Let $X$ be a Hunt process on a locally compact separable metric space in a strong duality with $\widehat{X}$. Assume that transition densities of $X$ and $\widehat{X}$ are comparable to the function $\widetilde{q}(t,x,y)$ defined in terms of the volume of balls and a certain scaling function. For an open set $D$ consider the killed process $X^D$, and a critical smooth measure on $D$ with the corresponding positive additive functional $(A_t)$. We show that the heat kernel of the the Feynman-Kac semigroup of $X^D$ through the multiplicative functional $\exp(-A_t)$ admits the factorization of the form ${\mathbf P}_x(\zeta >t)\widehat{\mathbf P}_y(\widehat{\zeta}>t)\widetilde{q}(t,x,y)$.
报告人简介:宋仁明,美国伊利诺伊大学教授, 在Ann. Probability, Probab. Theory Related Fields , Math. Ann, J. Eur. Math. Soc. , J. Funct. Anal. , Proc. Lond. Math. Soc. , T Trans. Amer. Math. Soc. , Stochastic Process. Appl. 等数学和概率论Top杂志上发表论文100多篇,出版专著2部。
详见个人主页 https://faculty.math.illinois.edu/~rsong/
第二个报告 15:15-16:15,提问5分钟,休息10分钟。
报告题目: Stochastic 3D Leray-α Model with Fractional Dissipation
摘 要: In this talk we study the well-posedness of stochastic 3D Leray-α model with general fractional dissipation driven by multiplicative noise. This model is the stochastic 3D Navier Stokes equation regularized through a smoothing kernel of order θ1 in the nonlinear term and a θ2-fractional Laplacian. In the case of θ1 ≥ 0, θ2 > 0 and θ1 +θ2 ≥ 5/4, we prove the global existence and uniqueness of strong solutions. We also study the Freidlin-Wentzell large deviation principle and the ergodicity for this model with degenerate stochastic force. This is a joint work with Li Shihu and Liu Wei.
报告人简介:谢颖超,江苏师范大学教授(兼南开大学教授,博士生导师),获国家人事部、教育部:全国模范教师称号。在Stochastic Process. Appl., J. Differential Equations, Potential Analysis, Discrete and Continuous Dynamic System-A等国际一流期刊发表近百篇论著。
详见个人主页:http://maths.xznu.edu.cn/5098/list.htm
第三个报告 16:30-17:30,提问5分钟。
报告题目: 随机发展方程的渐进行为
摘 要:由常微分方程确定的动力系统一般含有多个遍历态,受随机扰动后这些遍历态的变化是这个报告讨论的主题。 我们从几类特殊模型出发,讨论了退化、非退化高斯噪声所确定的随机微分方程的遍历性。研究结果表明,当噪声强度趋于零时,在非退化噪声情形,虽然随机微分方程解趋于原确定性方程,但两个方程解的遍历性有本质差别; 在退化噪声情形,解的遍历性会变得更复杂。
报告人简介:董昭,中国科学院研究员,曾负责和参加了国家973项目等多项项目,在 Probab. Theory Related Fields, Stochastic Process. Appl., Ann. Inst. Henri Poincaré Probab. Stat. ,J. Funct. Anal., J. Differential Equations 等发表近百篇论著。
详见个人主页:http://www.amt.ac.cn/member/dongzhao/index.html
公司联系人:周国立
欢迎广大师生积极参与!