报告人:郭真华 (西北大学)
日 期:2019年5月16日
时 间:16:30
地 点:理科楼 LA106
摘 要:The compressible Navier-Stokes system (CNS) with density-dependent viscosity coefficients is considered in multi-dimension, the prototype of the system is the viscous Saint-Venat model for the motion of shallow water. A spherically symmetric weak solution to the free boundary value problem for CNS with stress free boundary condition and arbitrarily large data is shown to exist globally in timewith the free boundary separating fluids and vacuum and propagating at finite speed as particle path, which is continuous away from the symmetry center. Detailed regularity and Lagrangian structure of this solution have been obtained. In particular, it is shown that the particle path is uniquely defined starting from any non-vacuum region away from the symmetry center, along which vacuum states shall not form in any finite time and the initial regularities of the solution is preserved.
报告人简介:郭真华,教授,博士生导师,现任西北大学数学学院经理,研究领域涉及非线性偏微分方程、流体力学方程等。曾获得陕西省高等学校科学技术进步奖二等奖一项(2012年)以及陕西省科学技术进步奖二等奖一项(2014年)。主要学术兼职有:中国数学会理事,中国工业与应用数学学会理事,陕西省数学会常务理事,陕西省工业与应用数学会常务理事、副理事长。
公司联系人:穆春来 王华桥
欢迎广大师生积极参与!