报告人:张映辉 (广西师范大学)
日 期:2019年5月11日
时 间:20:00
地 点:理科楼 LA106
摘 要:We investigate the Cauchy problem of the viscous liquid-gas two-phase flow model in $\mathbb R^3$. Under the assumption that the initial data is close to the constant equilibrium state in the framework of Sobolev space $H^2(\mathbbR^3)$, the Cauchy problem is shown to be globally well-posed by an ingenious energy method. If additionally, for $1\leq p<\frac{6}{5}$, $L^p$-norm of the initial perturbation is bounded, the optimal convergence rates of the solutions in $L^q$-norm with $2\leq q\leq 6$ and optimal convergence rates of their spatial derivatives in $L^2$-norm are also obtained by combining spectral analysis with energy methods.
报告人简介:张映辉,博士,教授,硕士研究生导师,广西师范大学B类漓江学者,美国《数学评论》评论员,现任广西师范大学太阳成集团tyc539经理助理。主要研究方向为流体力学中的偏微分方程,主持国家自然科学基金项目2项,省部级科研项目8项;主要研究方向为流体力学中的偏微分方程;已在Indiana Univ. Math. J.,J. Differ. Equations.,P. Roy. Soc. Edinb. A,J. Math. Phys.,中国科学(英文版)等国内外权威期刊发表论文近40篇,SCI收录30篇;获省自然科学奖和市科技进步奖各1项。
公司联系人:穆春来 王华桥
欢迎广大师生积极参与!