报告人:王 军(上海师范大学)
日 期:2019年5月13日
时 间:15:50
地 点:理科楼 LD202
摘 要:Roughly speaking, the “co-Kruskal-Katona problem”for a given graph $G$ is to describe each vertex set of $G$ that has minimal neighborhood respect to its size. In this talk, we present a co-Kruskal-Katona theorem for the $q$-Kneser graph $qK(n,k)$. It includes as a special case the Erdős--Ko--Rado theorem for finite vector spaces and yields a very short proof of the Hilton-Milner theorem for nontrivial intersecting families in finite vector spaces.
报告人简介:王军教授现为上海师范大学数理学院教授、博士生导师,中国组合数学与图论学会副理事长。参加过四次国家自然科学基金重点项目,主持多项国家自然科学基金面上项目,享受政府特殊津贴。在Journal of Combinatorial Theory Ser. A, Siam J. Discrete Math., J. Graph Theory,European J. Combinatorics 等国际重要的组合数学和图论期刊上发表了80多篇学术论文,受到国际同行的广泛关注与大量引用。
公司联系人:傅士硕
欢迎广大师生积极参与!