报告人:吕凡 (四川师范大学)
日 期: 2019年7月5日
时 间: 16:00
地 点: 理科楼 LD302
摘 要:Let {x_n}\subset[0, 1] be a sequence of real numbers and let {\phi(n)} be an arbitrary sequence in (0, 1). In this talk, we show that for any x\in(0, 1) , the set of beta>1 such that
|T_beta^n x – x_n|<\phi(n) holds for infinitely many n
is of zero or full Lebesgue measure in (1, \infty) according to the summation \sum\phi(n)<\infty or not, where T_\beta is the beta-transformation. We also determine, for any x\in(0, 1) , the exact Lebesgue measure of the set of beta>1 satisfying
|T_\beta^n x-x_n|<\beta^{-\ell_n} holds for infinitely many n
Where {\ell_n} is a sequence of nonnegative real numbers.
报告人简介:吕凡,博士,四川师范大学副教授。研究方向为度量数论与分形几何,主持国家自然科学基金青年基金一项。到目前为止,在Adv. Math.等高水平期刊发表论文10多篇。
公司联系人:孔德荣
欢迎广大师生积极参与!