Full cylinders and Diophantine analysis of beta-dynamical system in parameter space

发布日期:2019-06-27点击数:

报告人:吕凡 (四川师范大学)


日  期: 2019年75


时  间: 16:00


地  点: 理科楼 LD302


摘  要:Let {x_n}\subset[0, 1] be a sequence of real numbers and let {\phi(n)} be an arbitrary sequence in (0, 1). In this talk, we show that for any x\in(0, 1) , the set of beta>1 such that              

|T_beta^n x – x_n|<\phi(n) holds for infinitely many n

is of zero or full Lebesgue measure in (1, \infty) according to the summation \sum\phi(n)<\infty or not, where T_\beta is the beta-transformation. We also determine, for any  x\in(0, 1) , the exact Lebesgue measure of the set of beta>1 satisfying

|T_\beta^n x-x_n|<\beta^{-\ell_n} holds for infinitely many n

Where {\ell_n} is a sequence of nonnegative real numbers.

报告人简介吕凡,博士,四川师范大学副教授。研究方向为度量数论与分形几何,主持国家自然科学基金青年基金一项。到目前为止,在Adv. Math.等高水平期刊发表论文10多篇。


公司联系人:孔德荣


欢迎广大师生积极参与!


关于我们
太阳成集团tyc539的前身是始建于1929年的太阳成集团理学院和1937年建立的太阳成集团商学院,理学院是太阳成集团最早设立的三个学院之一,首任经理为数学家何鲁先生。