报告人:陈 泳(杭州师范大学)
日 期: 2019年7月4日
时 间: 上午10:00
地 点: 理科楼 LD302
摘 要: We study when a Toeplitz operator $T_\phi$ on the Dirichlet space of the unit disk is complex symmetric with respect to a class of conjugations and find surprisingly that the case of complex symmetries of Toeplitz operators according to these conjugations is very few. We also show that if $T_\phi$ is complex symmetric, then the curve $\phi|_\T(\T)$ must be nowhere winding.Furthermore, the spectrum and invertibility of complex symmetric Toeplitz operators are described.
报告人简介:陈泳,杭州师范大学数学系教授,硕士生导师,主持国家自然科学基金面上项目;研究领域为函数空间上的算子理论与算子代数,目前已在Journal of Functional Analysis,Integral Equations and Operator Theory, Journal of Mathematical Analysis and Applications 等知名数学刊物上发表论文20余篇。
公司联系人:赵显锋
欢迎广大师生积极参与!