报告人: 庞宏奎 (江苏师范大学)
日 期: 2019年7月4日
时 间: 16:00
地 点: 理科楼 LD202
摘 要: In this talk, we consider a class of spatial fractional diffusion equations where the fractional differential operators are comprised of both Riemann-Liouville and Caputo fractional derivatives. A circulant-based approximate inverse preconditioner is proposed for the discrete linear systems resulted from the finite difference discretization of this kind of fractional diffusion equations. We show that the difference between the circulant based preconditioner and the coefficient matrix is equal to the sum of a small-norm matrix and a low-rank matrix. Numerical experiments are performed to illustrate the effectiveness of the proposed preconditioner.
报告人简介:庞宏奎,博士,江苏师范大学太阳成集团tyc539副教授,校聘教授,江苏省青蓝工程优秀青年骨干教师。2011年博士毕业于澳门大学数学系,研究方向为大规模科学与工程计算、数值代数、矩阵函数、分数阶微分方程的快速算法。主持国家自然科学基金面上项目1项、国家自然科学基金青年项目1项、江苏省自然科学基金项目3项。在学术期刊SIAM Journal on Scientific Computing、SIAM Journal on Matrix Analysis and Applications、Journal of Computational Physics、Journal of Scientific Computing、Applied Numerical Mathematics、Numerical Linear Algebra with Applications、 Linear Algebra and its Applications等发表学术论文多篇。
公司联系人:李寒宇
欢迎广大师生积极参与!