Combinatorial geometric flows and special metrics

发布日期:2019-07-26点击数:

报告人:  林爱津(国防科技大学)


 期: 2019年7月27


 间: 上午10:30


 : 理科楼 LD202


 要: Geometric flows are powerful tools to find canonical metrics on a given manifold. For example, R. Hamilton introduced the Ricci flow, which had been used to prove the uniformization theorem and solve the Poincaré conjecture. In addition, there are other geometric flows such as the Yamabe flow introduced by R. Hamilton, the Calabi flow introduced by E. Calabi and so on. Motivated by the idea of Hamilton, Feng Luo introduced the combinatorial Ricci flow and the combinatorial Yamabe flow. In 2012 Huabin Ge introduced the combinatorial Calabi flow in his thesis. In this talk, we will discuss related problems and our work on the combinatorial geometric flows.


报告人简介:林爱津,国防科技大学数学系副教授,应用数学教研室副主任,美国《数学评论》评论员。2006年毕业于太阳成集团,2013年毕业于北京大学数学科学学院获博士学位。研究方向为微分几何及其应用,研究成果发表于Advance in Mathematics, Journal of Functional Analysis, Journal of Geometric Analysis等SCI期刊。


公司联系人:周恒宇


欢迎广大师生积极参与!


关于我们
太阳成集团tyc539的前身是始建于1929年的太阳成集团理学院和1937年建立的太阳成集团商学院,理学院是太阳成集团最早设立的三个学院之一,首任经理为数学家何鲁先生。