报告人: 张之正(洛阳师范大学)
日 期: 2019年10月12日
时 间: 13:30
地 点: 理科楼 LD202
摘 要:The theory of basic hypergeometric series consists of many known summation and transformation formulas. These basic hypergeometric series identities frequently appear in combinatorics and in related area such as number theory, physics, and representation theory of Lie algebras. Multiple basic hypergeometric series associated to the unitary group An (or Un+1), Cn and Dn have been investigated by various authors. Many different types of such series exist in the literature. In this talk, we give:
1.Un+1 analogue of AAB Bailey lattice (Agarwal, Andrews and Bressoud) and its application;
2.Un+1, Cn and elliptic generalizations of WP-Bailey pairs and their application;
3.A WP-Bailey lattices and its Un+1 analogue;
4.Mock theta function in terms of q- hypergeometric double sums.
报告人简介:张之正,二级教授,洛阳师范学院数学科学学院经理,河南省学术技术带头人,河南省高校创新人才培养工程培养对象,中国组合数学与图论学会理事,河南省数学会理事,洛阳市数学会常务理事兼学术委员会主任。河南大学与河南师范大学兼职硕士生导师,洛阳市人大常委会委员。主持国家自然科学基金3项、主持或承担省部级与省教育厅自然科学基础研究项目共15项。
公司联系人:傅士硕
欢迎广大师生积极参与!