The gamma expansion of Eulerian polynomials via continued fractions

发布日期:2019-11-08点击数:

报告人:  斌(法国里昂第一大学)


日  期: 2019年1111


时  间: 上午10:30


地  点: 理科楼 LD202


 要: A formula of Stembridge states that the permutation peak polynomials and descent  polynomials are connected  via a quadratique transformation. Rephrasing  the latter  formula  with permutation cycle peaks and excedances  we are able to prove a series of general formulas expressing polynomials counting permutations by various excedance statistics in terms of refined Eulerian polynomials. Our methods include permutation enumeration techniques  involving variations of classical bijections from permutations to Laguerre histories, explicit continued fraction expansions of combinatorial generating functions. This talk is based on joint work with Jianxi MAO and Jiang ZENG.


报告人简介韩斌,博士毕业于法国里昂第一大学和兰州大学,研究方向为计数组合学里面的排列统计量、连分式、组合序列的伽马正性等,已在应用数学进展(Adv. Appl. Math.)和电子组合(Electron. J. Combin.)等期刊发表论文。


公司联系人:傅士硕


欢迎广大师生积极参与!


关于我们
太阳成集团tyc539的前身是始建于1929年的太阳成集团理学院和1937年建立的太阳成集团商学院,理学院是太阳成集团最早设立的三个学院之一,首任经理为数学家何鲁先生。