报告人:王岁杰(湖南大学)
日期:2020年7月1日
时间:15:00-16:00
腾讯会议号:429 817 753(无密码)
https://meeting.tencent.com/s/A7LBMdRgThvx
报告摘要:At the Bowdoin College Summer 1971 NSF Conference on Combinatorics, Gian-Carlo Rota posed the following question: The minimal dependent sets of vectors in a space $V$ may be regarded as vectors in the derived space $\delta V$ over the same field by using the vectors of $V$ as a basis for $\delta V$. Can this same sort of process be applied to the dependent sets of a matroid $\mathcal{M}$ to investigate the ``dependencies among dependencies"? If so, what properties does $\delta\mathcal{M}$, the derived matroid, posses?'' In this talk, we will introduce the derived matroids and derived sequences of represented matroids and classify the derived sequences into three types: finite, cyclic, and divergent with complete characterizations.
报告人简介:王岁杰,理学博士,本科就读于武汉大学,硕士毕业于北京大学,2010年在香港科技大学取得博士学位,其后在香港科技大学和台湾中央研究院从事博士后研究,于2013年加入湖南大学,现为湖南大学数学院副教授,博士生导师。 研究领域涉及超平面配置,拟阵理论,杨表理论及其组合计数等,科研成果发表于J. Combin. Theory Ser. A, J. Combin. Theory Ser. B, Adv. in Appl. Math., Math. Proc. Camb. Phil. Soc 等杂志。
公司联系人:傅士硕
欢迎广大师生积极参与!