报告人:吕凡(四川师范大学)
日期:2020年7月7日
时间:14:00
腾讯会议号:455 791 953 (无密码)
报告摘要:
Let β > 1 and x ∈ [0, 1) be two real numbers. For any y ∈ [0, 1), the maximal
run-length function r_{x}(y, n) (with respect to x) is defined to be the maximal
length of the prefix of x’s β-expansion which appears in the first n digits of y’s.
In this talk, we introduce the metric properties of the maximal run-length function
and apply them to the hitting time, which generalizes many known results. In
the meantime, the fractal dimensions of the related exceptional sets are also
determined.
报告人简介: 吕凡为四川师范大学数学科学学院副教授,2015年博士毕业于华中科技大学,研究领域为分形几何与动力系统。曾主持国家自然科学基金青年基金一项,在Adv. in Math., Math. Z., Nonlinearity等国际SCI刊物上已发表科研论文10余篇。
公司联系人:孔德荣
欢迎广大师生积极参与!