Uniquness in regular shock reflection problem

发布日期:2020-07-08点击数:

报告人 :向伟 (香港城市大学)

日期:2020年7月10日

时间:9:00

腾讯会议 ID536 350 564(无密码)

会议链接:https://meeting.tencent.com/s/qwUX67s0o1Bc


报告摘要:We discuss shock reflection problem and the von Neumann conjectures on transition between regular and Mach reflections. Then we will talk about our recent results on the uniqueness of regular reflection solutions for potential flow equation in a natural class of self-similar solutions.The approach is based on a nonlinear version of method of continuity. An important property of solutions for the proof of uniqueness is the convexity of the free boundary. Actually, we show that convexity is a sufficient and necessary condition for the monotonicity of the psudo-potential.


报告人简介:向伟,香港城市大学副教授,博士毕业于复旦大学。研究兴趣包括流体力学中的非线性偏微分方程及相关分析。曾获香港数学学会杰出青年研究学者奖,已在 Adv. Math.、Arch. Ration. Mech. Anal.、 SIAM J. Math. Anal.、Nonlinearity、J. Differential Equations 等杂志上发表论文二十余篇。


联系人:穆春来 王华桥



欢迎广大师生积极参与!




关于我们
太阳成集团tyc539的前身是始建于1929年的太阳成集团理学院和1937年建立的太阳成集团商学院,理学院是太阳成集团最早设立的三个学院之一,首任经理为数学家何鲁先生。