报告人 :凡石磊(华中师范大学)
日期:2020年7月10日
时间:14:30
腾讯会议 ID:873 787 965 (无密码)
报告摘要:I will report our work on Fuglede's conjecture in the filed Q_p of p-adic numbers. We proved that Fuglede's conjecture concerning spectral sets and tilings holds in the field of p-adic numbers, i.e. a Borel set of positive and finite Haar measure is a spectral set if and only if it tiles the space by translation, although the conjecture remains open in the field of real numbers. Our study is based on the investigation of a convolution equation of the form f * \mu =1, where \mu is a measure supported by a discrete set and f is a non-negative integrable function. I. J. Schoenberg's result concerning the p^n-th roots of unity plays a crucial role. It is a joint work with Ai-Hua FAN, Lingmin LIAO and Ruxi SHI.
报告人简介:凡石磊,华中师范大学副研究员,硕士生导师。主要从事非阿基米德域上动力系统、概率论及相关领域的研究工作。在 Math. Ann., Adv.Math., J. London Math. Soc., J. Funct. Anal., J. Differential Equations, Probab. Theory and Relat. Fields, J. Dynam. Differential Equations等国际学术期刊发表论文10余篇;于2017年入选湖北省楚天学者计划之楚天学子;先后主持博士后面上项目、国家自然科学基金青年项目、国家自然科学基金委国际合作与交流项目、国家自然科学基金面上项目、霍英东青年教师基金项目等。
联系人:孔德荣
欢迎广大师生积极参与!