Some recent progress on a fourth order elliptic systems

发布日期:2020-10-14点击数:

报告人 :向长林(长江大学)

日期:2020年10月16日

时间:下午 14:30

地址:腾讯会议 639 458 184


报告摘要:Since the seminar work on weakly harmonic mappings of Helein in 1991 around, there have been great progress in the field of conformally invariant variational problems. In particular, the 2007 work of T. Riviere established a very powerful new tool to study regularity of weak solutions to a very general second order elliptic systems. His work was soon extend by Lamm and himself in 2008 to a fourth order elliptic system which can model fourth order conformally invariant varitional problems such as biharmonic mappings and related. However, in the 2008 work, they only proved continuity of the forth order system, left open whether the weak solution is Hölder continuous or not. In this talk, I will discuss some recent progress in this respect, including not only the Hölder continuity theory, but also Lp theory of this system as well. This is a joint work with Chang-Yu Guo (Shangdong Univ.) and Gao-Feng Zheng (Central China Normal Univ.)


报告人简介:向长林,男,长江大学数学与信息学院副教授。2015年9月博士毕业于芬兰于韦斯屈莱大学数学系,师从钟晓教授。2016年8月完成博士后研究。2016年9月至今任教于长江大学信息与数学学院。主要研究领域为椭圆型偏微分方程(组)和变分法, 几何分析;研究椭圆型方程(组)解的存在性, 正则性, 唯一性,非退化性等各种量化性质。文章发表在JLMS, IRMN, JDE, CVPDE等期刊。主持国家自然科学青年基金一项。


联系人:周恒宇



欢迎广大师生积极参与!


关于我们
太阳成集团tyc539的前身是始建于1929年的太阳成集团理学院和1937年建立的太阳成集团商学院,理学院是太阳成集团最早设立的三个学院之一,首任经理为数学家何鲁先生。