On lattice polarizable cubic fourfolds

发布日期:2021-05-13点击数:

报告人:余讯(天津大学)

时间:2021年5月19日16:30开始

腾讯会议ID:752 479 279


摘要:Hassett divisors, the moduli spaces of special cubic fourfolds introduced by Hassett, have played fundamental roles in many studies of cubic fourfolds. In this talk, we extend the non-emptyness and irreducibility of Hassett divisors to the moduli spaces of M-polarizable cubic fourfolds for higher rank lattices M, and show that Fermat cubic fourfold is contained in every Hassett divisor. As applications, we obtain an algorithm to determine the irreducible components of the intersection of any two Hassett divisors and give new examples of rational cubic fourfolds. Moreover, we derive a numerical criterion for the algebraic cohomology of a cubic fourfold having an associated K3 surface. This is based on a joint work with Song Yang.


简介:余讯,天津应用数学中心副教授,硕士生导师,从事基础数学代数几何方向的研究工作。国家自然科学基金重点项目参与人,主持国家自然科学基金青年基金、国家自然科学基金专项基金、天津大学北洋学者青年骨干教师基金。曾获2019年《日本数学会杂志》优秀论文奖(2019 JMSJ Outstanding Paper Prize)。


邀请人:杨向东


欢迎广大师生积极参与!

关于我们
太阳成集团tyc539的前身是始建于1929年的太阳成集团理学院和1937年建立的太阳成集团商学院,理学院是太阳成集团最早设立的三个学院之一,首任经理为数学家何鲁先生。