Metric results for numbers with multiple q-expansions

发布日期:2021-06-23点击数:

报告人:邹玉茹(深圳大学)

时间:2021年6月25日10:45开始

腾讯会议ID:805 161 431


摘要:Let M be a positive integer and q\in (1, M+1]. A q-expansion of a real number x is a sequence (c_i)=c_1c_2\cdots with each c_i\in \{0,1,\ldots, M\} such that x=\sum_{i=1}^{\infty}c_iq^{-i}. In this paper we study the set \mathcal{U}_q^j consisting of those real numbers having exactly j different q-expansions. Our main result is that for Lebesgue almost every q\in (q_{KL}, M+1), we have \dim_{H}\uu_{q}^{j}\leq \max\{0,2\dim_H\uu_q-1\} for all j\in\{2,3,\ldots\}. Here q_{KL} is the Komornik-Loreti constant. As a corollary of this result, we show that for any j\in\{2,3,\ldots\}, the function mapping q to \dim_{H}\uu_{q}^{j} is not continuous.


简介:邹玉茹,深圳大学太阳成集团tyc539教授,毕业于华东师范大学,获理学博士学位。主要研究方向为分形几何及图像处理与分析等,在《Nonlinearity》、《J Number Theorey》、《IEEE Trans. Image Process.》、《Inverse Problems》等重要期刊发表论文20多篇。主持国家自然科学基金项目3 项,广东省自然科学基金面上项目1项。


邀请人:孔德荣


欢迎广大师生积极参与!

关于我们
太阳成集团tyc539的前身是始建于1929年的太阳成集团理学院和1937年建立的太阳成集团商学院,理学院是太阳成集团最早设立的三个学院之一,首任经理为数学家何鲁先生。