报告人:周青山(佛山科学技术学院)
时间:2021年12月01日10:30开始
腾讯会议ID:671473685
摘要:We establish a version of a classical theorem of Pommerenke, which is a diameter version of the Gehring-Hayman inequality on Gromov hyperbolic domains of $\mathbb{R}^n$. Two applications are given. Firstly, we generalize Ostrowski's Faltensatz to quasihyperbolic geodesics of Gromov hyperbolic domains. Secondly, we prove that unbounded uniform domains can be characterized in the terms of Gromov hyperbolicity and a naturally quasisymmetric correspondence on the boundary, where the Gromov boundary is equipped with a Hamenst\"adt metric (defined by using a Busemann function). This is a joint work with Antti Rasila and Tiantian Guan.
简介:周青山,佛山科学技术学院讲师,毕业于汕头大学。研究兴趣为拟共形映射与度量空间上的分析。目前在Isearal J. Math., Stud. Math., J.Geom. Anal., Proc. Amer. Math. Soc., C. R. Math. Acad. Sci. Paris, Ann. Acad. Sci. Fenn. Math.等期刊发表多篇论文。
邀请人:黄小军
欢迎广大师生积极参与!