报告人 :夏先伟(江苏大学)
日期:2020年9月10日
时间:10:30开始
腾讯会议 ID:831 159 358(无密码)
报告摘要:In 2007, Andrews introduced the odd rank of odd Durfee symbols. Let $N^{0}(m,n)$ denote the number of odd Durfee symbols of $n$ with odd rank $m$, and $ N^{0}(r,m;n)$ be the number of odd Durfee symbols of $n$ with odd rank congruent to $r$ modulo $m$. Recently, Wang established explicit formulas for the generating functions of $N^{0} (r,8;n)$ and their $8$-dissections. In this talk, we give the generating functions for $N^{0}(r,12;n)$ by utilizing some identities involving Appell-Lerch sums $m(x,q,z)$ and a universal mock theta function $g(x,q)$. Based on these formulas, we determine the signs of $N^{0} (r,12;4n+t)-N^{0}(s,12;4n+t)$ for all $0\leq r, s\leq 6$ and $0\leq t \leq 3$. Moreover, let $D_k^0(n)$ denote the number of the number of $k$-marked odd Durfee symbols of $n$ which was introduced by Andrew. He also conjectured that $D_2^{0}(8n+r)$ ($r=4,6$) and $D_3^0(16n+s)$ ($s=1,9,11,13$) are even. These two conjectures were confirmed by Wang. Motivated by Wang's work, we prove new congruences on $D_k^0(n)$ which are stronger than Andrews' congruences.
报告人简介:夏先伟,教授,博士生导师,江苏省杰青获得者。2010年博士毕业于南开大学,师从陈永川教授,主要研究组合数学、特殊函数与整数分拆,在包括Math. Comput., Proc. Edinb. Math. Soc., Pacific J. Math., European J. Combin., Acta Arith., J. Number Theory等国外学术期刊上发表研究论文50余篇。
联系人:傅士硕
欢迎广大师生积极参与!