当前位置: 首页 > 新闻中心 > 学术活动 > 正文

On the integrality of reciprocal sums of polynomial sequences

发布日期:2019-12-07点击数:

报告人: 洪绍方(四川大学)

时 间:2019年12月13日16:00

地 点:理科楼LD302


摘 要:Let $n$ be an integer. In 1915,Theisinger proved that the $n$-th harmonic sum$1+\frac{1}{2}+...+\frac{1}{n}$ is an integer if and onlyif $n=1$. In 1923, Nagell extended Theisinger'stheorem from the sequence of positive integers to generalarithmetic progressions by showing that if $a$ and $b$ arepositive integers and $n\ge 2$, then the reciprocal sum

$\sum_{i=0}^{n-1}\frac{1}{a+bi}$ is an integer if and onlyif $n=a=1$. In 1946, Erd\H{o}s and Niven generalizedNagell's theorem by establishing a similarresult on the integrality of the elementary symmetric functionsof $\frac{1}{a}, \frac{1}{a+b}, ..., \frac{1}{a+(n-1)b}$.

In the recent years, some authors including the speakerextended Erd\H{o}s and Niven's result from the arithmeticprogressions to arbitrary nonnegative integer coefficientspolynomial sequences. In this talk, we will speak aboutrecent progresses on this interesting topic.


报告人简介洪绍方,四川大学数学学院教授、博士生导师,教育部新世纪优秀人才, 四川省学术和技术带头人,任国际数学期刊AIMS Math.和Journal of Math.等编委, 主要从事数论、算术几何和编码等方面的研究, 先后负责主持国家自然科学基金和教育部博士点基金等10多个纵向项目. 已经在Proc. Edinb. Math. Soc., Forum Math., Proc. Amer. Math. Soc., Acta Math. Hungar., J. Aust. Math. Soc., Comptes Rendus Math., Arch. Math., J. Number Theory, J. Algebra, Ramanujan J, Acta Arith., Finite Fields Appl.Science China Math.等国内外重要数学期刊上发表论文百余篇,其中SCI收录论文近70篇. 先后访问了美国,法国,以色列,日本和韩国等国以及台湾和香港地区的一些著名高校和研究所,于2013年参加了在台湾大学举行的第六届国际华人数学家大会,并作45分钟的邀请报告。已经培养毕业硕士60名,毕业博士10多名,其中多人已经晋升教授。


公司联系人: 傅士硕


欢迎广大师生积极参与!


关于我们
太阳成集团tyc539的前身是始建于1929年的太阳成集团理学院和1937年建立的太阳成集团商学院,理学院是太阳成集团最早设立的三个学院之一,首任经理为数学家何鲁先生。