报告人: 陈丽娜(南京大学)
日 期: 2019年10月14日
时 间: 10:30
地 点: 理科楼 LD202
摘 要: The volume entropy is an asymptotic invariant of a compact Riemannian manifold that measures the exponential growth rate of the volume of metric balls in its universal cover. This concept plays an important role in differential geometry. In this talk, we will survey some rigidity(quantitative rigidity) results about volume entropy, and discuss its continuity. At last, we will present some open problems associated with volume entropy.
报告人简介:陈丽娜,博士毕业于首都师范大学,华东师范大学几何中心博士后,现于南京大学工作. 目前主要研究 Ricci 曲率有下界的黎曼流形上的几何拓扑性质,研究成果深刻,发表在J.Diff. Geom.和Trans. Amer. Math. Soc.等杂志上.
公司联系人:邵红亮
欢迎广大师生积极参与!