报告人: 陆国震 (美国康涅狄格大学)
日 期: 2019年6月10日
时 间: 上午8:00
地 点: 理科楼 LD402
摘 要: Sharp geometric inequalities play an important role in analysis and differential geometry. In this talk, we will review some recent works on sharp Hardy-Sobolev-Maz'ya inequalities on the upper half space which improve the classical Sobolev inequality. We will also discuss the borderline case of the Sobolev inequalities, namely, the Trudinger-Moser and Adams inequalities on hyperbolic spaces. In particular, we will describe the Fourier analysis techniques on the hperbolic spaces and their applications to establish sharp geometric inequalities and prove that the best constants for the Hardy-Sobolev-Maz'ya and Sobolev inequalities are the same in some cases and are different in other cases.
报告人简介:陆国震,康涅狄格大学教授 . 研究领域:调和分析和几何不等式及其在偏微分方程和几何分析中的应用。现为Nolinear Analysis (tma),Advance Nolinear Study, Cpaa等多个国际数学杂志的编委。在Cpam, Amer.J.Math, Adv.Math. Memoires of AMS等著名杂志上发表论文一百多篇.
公司联系人:穆春来
欢迎广大师生积极参与!