当前位置: 首页 > 新闻中心 > 学术活动 > 正文

Kirchberg's Factorization Property, Residual Finiteness, and Property (T) for Discrete Quantum Groups

发布日期:2019-03-22点击数:

报告人:王述洲 (美国乔治亚大学)


时  间:2019年3月25日  14:00--15:00


地  点:理科楼 LD302


摘  要: In 1964, Takesaki discovered that the product representation of the left and right regular representations of the reduced group C*-algebra of the free group on two generators is unbounded under the minimal/spatial tensor product, thus introducing non-nuclear C*-algebras. Wassermann subsequently showed that the product representation of the left and right regular representation of the full group C*-algebra of the same group is bounded under the minimal/spatial tensor product. Using these ideas, Kirchberg introduced the notion of factorization property for discrete groups and showed that residual finite groups has the factorization property and conversely, groups with both the factorization property and property (T) are residually finite. In this talk, we will explain how to extend these results of Kirberberg for discrete groups to discrete quantum groups and show that the discrete duals of the universal orthogonal and unitary quantum groups have the factorization property when the dimension of the fundamental representation of the latter is different from 3.

(Joint work Angshuman Bhattacharya, Michael Brannan, Alexandru Chirvasitu)


报告人简介:王述洲,美国乔治亚大学数学系副教授。研究领域为算子代数(量子群)。详情见个人主页http://alpha.math.uga.edu/~szwang/


公司联系人:黄辉斥


欢迎广大师生积极参与!


关于我们
太阳成集团tyc539的前身是始建于1929年的太阳成集团理学院和1937年建立的太阳成集团商学院,理学院是太阳成集团最早设立的三个学院之一,首任经理为数学家何鲁先生。