报告人:沈维孝(复旦大学)
时 间:2019年2月19日 14:00--15:00
地 点:理科楼 LA106
摘 要:Let S_q(n) denote the sum of digits of q-expansion of n, and consider the generalized Thue-Morse sequences defined by t_n^{(c)}=e^{2\pi c S_q(n)}. We study the uniform norm of the trigonometric polynomials \sigma_{N}^{(c)}(x) =\sum_{n=0}^{N-1} t_n^{(c)}e^{2\pi i x}, using the theory of ergodic optimization. We shall also show that q^{-n} |\sigma_{q^n}(x)| behaves like e^{n\alpha(x)}$ with \alpha(x) multifractal. This is a joint work with Fan and Schmeling.
报告人简介:沈维孝,复旦大学上海数学中心教授,荣获“陈省身数学奖”。研究方向:Dynamical systems (in particular, real and complex one-dimensional dynamics)。
公司联系人:李寒峰
欢迎广大师生积极参与!