报告人: 魏益民 (复旦大学)
时 间: 2018年10月11日 17:10--18:10
地 点: 理科楼 LD202
摘 要:This talk is contributed to a fast algorithm for Hankel tensor–vector products. First, we explain the necessity of fast algorithms for Hankel and block Hankel tensor–vector products by sketching the algorithm for both one-dimensional and multi-dimensional exponential data fitting. For proposing the fast algorithm, we define and investigate a special class of Hankel tensors that can be diagonalized by the Fourier matrices, which is called anti-circulant tensors. Then, we obtain a fast algorithm for Hankel tensor-vector products by embedding a Hankel tensor into a larger anti-circulant tensor.
We show that if a lower-order Hankel tensor is positive semidefinite (or positive definite, or negative semi-definite, or negative definite, or SOS), then its associated higher-order Hankel tensor with the same generating vector, where the higher order is a multiple of the lower order, is also positive semi-definite (or positive definite, or negative semi-definite, or negative definite, or SOS, respectively).
报告人简介:魏益民,1997年毕业于复旦大学数学研究所并获得理学博士学位,毕业后留校在数学科学学院工作,2006年4月晋升正教授,计算数学专业博士生导师。2000.9-2001.6访问美国哈佛大学和麻省理工学院,任高级访问学者;现为国际线性代数学会(ILAS) 会员、美国数学会会员、美国工业与应用数学会(SIAM)会员、中国计算数学学会—线性代数专业委员会委员会员,美国数学评论评论员。同时担任FILOMAT、J. Appl. Math. Comput. 以及高校计算数学学报等多个杂志的编委。已在国际国内学术刊物上发表论文300余篇,与他人合作出版著作4本。从事专业为计算数学,主要研究领域包括矩阵广义逆与最小二乘问题、扰动理论与条件数估计、随机算法设计、张量分析与计算等。
公司联系人:李寒宇
欢迎广大师生积极参与!