报告人:徐衍聪(杭州师范大学)
时 间: 2018年6月8日 上午11:00--12:00
地 点: 理科楼LD1202
摘 要:In this paper, we consider local and global bifurcations in two HIV models with cell-to-cell interaction. The difference between the two models lies in the inclusion or omission of the effect of involvement. Particular attention is focused on the effects due to the cell-to-cell transmission. We investigate the local and global stability of equilibria of the two models and give a comparison. We also study Hopf bifurcation and apply normal form theory to determine the amplitudes and the periods of bifurcating limit cycles. It is shown that the involvement of uninfected cells plays an important role in the occurrence of oscillations due to Hopf bifurcation. It is found that the increasing cell-to-cell interaction could be the main cause of forcing Hopf bifurcation to disappear, and thus eliminating the oscillating motions.
报告人简介:徐衍聪,杭州师范大学数学系教授,系主任,硕士生导师,华东师范大学应用数学博士,浙江大学博士后,美国(SIAM)工业与应用数学会员,美国数学评论评论员。先后访问美国布朗大学、日本京都大学、德国不莱梅大学,加拿大西安大略大学,约克大学等高校。目前主要从事动力系统分支理论、局部斑图分支及应用研究,主要包括:Dynamical Systems, Dynamics of Patterns, Nonlinear Wave,Homoclinic and Heteroclinic Phenomena等研究工作。先后在国内外数学杂志发表论文40余篇,主持国家自然科学基金面上项目、浙江省自然科学基金, 日本GCOE项目及参与各类基金20余项。
公司联系人: 朱长荣
欢迎广大师生积极参与!