报告人: 王勤 (华东师范大学)
时 间: 2018年5月21日上午 8:30---10:00
地 点: 理科楼LD302
摘 要: Coarse geometry and higher index problems on warped cones
Warped cones are metric spaces introduced by John Roe from discrete group actions on compact metric spaces to produce interesting examples in coarse geometry.We show that a certain class of warped cones admit a fibred coarse embedding into an Lp-space if and only if the discrete group admits a proper affine isometric action on an Lp-space. This also holds for uniformly convex Banach spaces or Banach spaces with nontrivial type. It follows that the maximal coarse Baum-Connes conjecture and the coarse Novikov conjecture hold for a certain class of warped cones which do not coarsely embed into any Lp-space for any p greater or equal to 1.
Persistence approximation property for maximal Roe algebras
The persistent approximation property for quantitative K-theory of filtered C*-algebras was introduced by H. Oyono-Oyono and G. Yu. In this talk, we shall discuss the persistence approximation property for maximal Roe algebras of coarse spaces, and its applications to the maximal coarse Baum-Connes conjecture. This is joint work with Zhen Wang.
报告人简介:王勤,华东师范大学数学系算子代数研究中心教授、博士生导师,主要从事算子代数、粗几何、非交换几何等领域的研究,在非交换几何的重要问题“粗Baum-Connes猜想”、“粗Novikov猜想”等方面取得了若干重要成果,入选教育部新世纪优秀人才支持计划、上海市曙光学者、上海市浦江学者。
公司联系人: 王显金
欢迎广大师生积极参与!