报告人:王毅(中国科学技术大学)
时间:2018.1.13(星期六)9:20-10:00
地点:理科楼LD201
摘要: In this talk, we will report some recent progress on the invariant cone families (ICF) in infinite-dimensional dynamical systems. For linear cocycles, we will discuss the close relation of the ICF with Multiplicative Ergodic Theorem, dominated splitting (exponential separation), as well as Krein-Rutman Type Theorem. For nonlinear cocycles, we show that ICF plays a key role in investigating the dynamics of nonautonomous parabolic equations on the cycle or on the higher-dimensional domain with symmetry. In particular, we show the appearance of almost periodically (autmorphically) forced circle flow and the asymptotic symmetry for infinite-dimensional systems generated by these nonlinear parabolic equations.
报告人简介:王毅,中国科学技术大学数学科学学院教授,博士生导师。主要从事单调动力系统与微分方程领域的研究,在包括J. Eur. Math. Soc.、Adv. Math.、Proc. London Math. Soc.、SIAM J. Math. Anal.、Trans. Amer. Math. Soc.、J. Diff. Eqns.、J. Math. Biol.等高水平杂志上发表论文30余篇。全国百篇优秀博士学位论文获得者,入选教育部新世纪优秀人才支持计划。
公司联系人:朱长荣