时间:2017.12.18(星期一) 10:30--11:30
摘要:In this talk, the blow-up mechanism for a class of quasilinear integrable equations which could possess peakons is investigated. The dynamics of the blow-up quantity involves interplay between the solution $u$ and its gradient $u_x$. We provide two different approaches. The first one is based on a refined analysis on either the evolution of $Cu \pm u_x$ or the growth rate of the relative ratio $u_x/u$. The second one isolates the ``truly" blowing up component from the blow-up quantity and utilizes the conservation laws to show that such a component blows up before the other component degenerates.
报告人简介:1994年博士毕业于美国布朗大学数学系,师从国际著名数学家Walter Strauss教授,其研究兴趣在非线性波解的适定性、稳定性、长时间性态以及数值计算等,是国际上偏微分方程研究尤其是浅水波领域的一流专家,目前已在CPAM, CMP, ARMA, Adv. Math, J. Reine Angew. Math., JMPA, Math.Ann., Math.Z., JFA, CPDE, TAMS, Nonlinearity与 JDE等国际著名刊物上发表论文90余篇,是国际上非线性发展方程理论研究领域的权威中青年学者。