报告人:张土生(中国科学技术大学)
时间:2022年04月30日上午10:30开始
腾讯会议ID:739 354 914
摘要:Consider stochastic differential equations (SDEs) in $\Rd$: $dX_t=dW_t+b(t,X_t)\d t$, where $W$ is a Brownian motion, $b(\cdot, \cdot)$ is a measurable vector field. It is known that if $|b|^2(\cdot, \cdot)=|b|^2(\cdot)$ belongs to the Kato class $\K_{d,2}$, then there is a weak solution to the SDE. In this article we show that if $|b|^2$ belongs to the Kato class $\K_{d,\a}$ for some $\a \in (0,2)$ ($\a$ can be arbitrarily close to $2$), then there exists a unique strong solution to the stochastic differential equations, extending the results in the existing literature as demonstrated by examples. Furthermore, we allow the drift to be time-dependent. The new regularity estimates we established for the solutions of parabolic equations with Kato class coefficients play a crucial role.
简介:张土生教授是国际知名的概率论学家,主要从事随机(偏)微分方程, 大偏差, Malliavin Calculus, 狄氏型等方面研究。张土生现为英国曼切斯特大学(Manchester University, UK)概率统计系主任,2005年受聘为南开大学长江学者“讲座教授”,2011年受聘为中国科技大学“国家特殊贡献专家”。先后访问了美国加州大学欧文分校、康奈尔大学、德国比勒费尔德大学等数十个国家和地区的大学和科研院所, 被邀请在四十多个大型的国际随机分析会议上作特邀报告。张土生在《Ann. Probab.》,《Probab. Theory Related Fields》, 《Stochastic Process. Appl.》, 《J. Funct. Anal. 》, 《J. Differential Equations》,《Potential Anal.》 等国际权威杂志上发表论文150余篇,出版专著4部。目前为《Stochastic Process. Appl. 》, 《J. Theoretical Probab.》, 《Commun. Math. Stat. 》, 《Potential Anal.》, 《Acta Math. Appl. Sin. 》等国际上重要杂志的编委。
邀请人:周国立
欢迎广大师生积极参与!