报告人:张希承(武汉大学)
时间:2022年05月13日09:00开始
腾讯会议ID:558 806 586
摘要:Let $\alpha\in(0,2)$ and $d\in\mathbb{N}$. Consider the following stochastic differential equation (SDE) driven by $\alpha$-stable process in $\mathbb{R}^d$:$$dX_t=b(X_t)d t+\sigma(X_{t-})d L^{\alpha}_t, \quad X_0=x\in\mathbb{R}^d,$$where $b:\mathbb{R}^d\to\mathbb{R}^d$ and $\sigma:\mathbb{R}^d\to\mathbb{R}^d\otimes\mathbb{R}^d$ are locally $\gamma$-H\"older continuous with $\gamma\in(0\vee(1-\alpha)^+,1]$,\textcolor{red}{and} $L^\alpha_t$ is a $d$-dimensional symmetric rotationally invariant $\alpha$-stable process. Under some dissipative and non-degenerate assumptions on $b,\sigma$,we show the $V$-uniformly exponential ergodicity for the semigroup $P_t$ associated with $\{X_t(x),t\geq 0\}$. Our proofs are mainly based on the heat kernel estimates recently stablished in \cite{MZ20} through showing the strong Feller property and the irreducibility of $P_t$. It is interesting that when $\alpha$ goes to zero, the diffusion coefficient $\sigma$ can grow faster than the drift $b$.As applications, we put forward a new heavy-tailed sampling scheme.
(This is a joint work with Xiaolong Zhang.)
简介:张希承,武汉大学太阳成集团tyc539教授,博士生导师。葡萄牙里斯本大学博士后,曾受法国科学院院士Malliavin邀请访问巴黎,法国La Rochelle大学博士后。澳大利亚新南威尔士大学博士后,曾获德国洪堡奖学金资助于德国Bielefeld大学从事随机分析研究,2010年入选教育部“新世纪优秀人才支持计划,先后主持国家自然科学基金项目4项,2013年获国家自然科学基金杰出青年项目。2016年获教育部国家高层次人才特聘教授。主要研究方向有Wiener泛函以及Poisson泛函的Malliavin分析,随机流,随机偏微分方程,动力系统随机扰动的大偏差,Navier-Stokes方程的概率方法等。迄今,已在概率和方程方向的顶级刊物上发表论文一百多余篇,研究深度和广度在获得国内外一定的认可。
邀请人:周国立
欢迎广大师生积极参与!