报告人:俞成(佛罗里达大学)
时间:2022年05月18日09:00开始
腾讯会议ID:592 383 086(无密码)
摘要:In this talk, I will discuss the non-uniqueness of global weak solutions to the isentropic system of gas dynamics. In particular, I will show that for any initial data belonging to a dense subset of the energy space, there exists infinitely many global weak solutions to the isentropic Euler equations for any $1<\gamma\leq 1+2/n$. The proof is based on a generalization of convex integration techniques and weak vanishing viscosity limit of the Navier-Stokes equations. This talk is based on the joint work with M. Chen and A. Vasseur.
简介:俞成,佛罗里达大学数学系助理教授,博士毕业于匹兹堡大学。研究方向为偏微分方程。已在 Invent. Math., J. Eur. Math. Soc., Adv. Math., Arch. Ration. Mech. Anal., J. Math. Pures Appl.等杂志上发表论文10余篇。
邀请人:穆春来 王华桥
欢迎广大师生积极参与!