当前位置: 首页 > 新闻中心 > 学术活动 > 正文

Uniform Poincare inequalities and logarithmic Sobolev inequalities for mean field particle systems

发布日期:2022-06-17点击数:

报告人:刘伟(武汉大学)

时间2022年06月21日09:00开始

腾讯会议ID:578 225 294


摘要:In this talk we show some explicit and sharp estimates of the spectral gap and the log-Sobolev constant for mean field particles system, uniform in the number of particles, when the confinement potential have many local minimums. Our uniform log-Sobolev inequality, based on Zegarlinski’s theorem for Gibbs measures, allows us to obtain the exponential convergence in entropy of the McKean-Vlasov equation with an explicit rate constant, generalizing the result of Carrillo-McCann-Villani(2003) by means of the displacement convexity approach, or Malrieu(2001,2003) by Bakry-Emery technique or the recent work of Bolley-Gentil-Guillin by dissipation of the Wasserstein distance.This talk is based on a joint work with Arnaud Guillin, Liming Wu and Chaoen Zhang.


简介:刘伟,武汉大学教授。主要从事随机分析、大偏差、泛函不等式的研究,已在Comm. Math. Phys., Stochastic Process. Appl.,  J. Math. Pures Appl. , SIAM J. Numer. Anal.等国际权威数学期刊发表学术论文50余篇。


邀请人:周国立


欢迎广大师生积极参与!



关于我们
太阳成集团tyc539的前身是始建于1929年的太阳成集团理学院和1937年建立的太阳成集团商学院,理学院是太阳成集团最早设立的三个学院之一,首任经理为数学家何鲁先生。