报告人:凌晨(杭州电子科技大学)
时间:2022年06月28日16:00-
地址:理科楼LA106
摘要:This paper proposes two tensor product based approaches to tensor completion, which recovers missing entries of data represented by tensors. The proposed approaches are based on the tensor singular-value decomposition and the related tensor tubal rank, which are able to capture hidden information from tensors thanks to the balanced consideration of multi-dimensional low-rank features. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solutions. Some computational results for color images, multi-spectral images, videos, and magnetic resonance imaging data recovery show that our approaches perform better than some existing state-of-the-art tensor-based completion methods.
简介:杭州电子科技大学理学院教授,博士生导师。现任中国运筹学会数学规划分会副理事长、中国经济数学与管理数学研究会副理事长,曾任中国运筹学会理事、中国系统工程学会理事、浙江省数学会常务理事。近十年来,主持国家自科基金和浙江省自科基金各4项、其中省基金重点项目1项。在国内外重要刊物发表论文80余篇,多篇发表在Math. Program.、SIAM J. on Optim.和 SIAM J.on Matrix Anal.and Appl. 、COAP、JOTA、JOGO等。
邀请人:李声杰
欢迎广大师生积极参与!