报告人:肖冬梅(上海交通大学)
时间:2022年07月25日 09:30
腾讯会议号:150 561 984
报告摘要:In this talk, we first introduce Hilbert 16 problem and the weaken version of the second part proposed by Arnold, then we give the least upper bound on the number of centers for any planar polynomial Hamiltonian system with degree n. This least upper bound depends on the degree of the polynomial vector field and the number of its critical points at infinity. Furthermore, when the number of centers is exactly the least upper bound, we investigate configurations of centers of planar polynomial Hamiltonian vector fields with two intersecting invariant straight lines, and obtain some rules on the configurations. As an application, we describe completely the different configurations of centers of cubic polynomial vector fields with two intersecting invariant lines if the number of its centers is exactly the least upper bound. This talk is based on a joint work with Hongjin He and Changjian Liu.
报告人简介:肖冬梅,上海交通大学特聘教授,1991年在北京大学数学系获理学博士学位,1995-1996年在美国加州大学伯克利分校数学系做博士后研究。主要从事微分方程定性理论、分支理论及其应用的研究,与合作者一起在弱化Hilbert16问题、高余维分支、非线性系统的全局动力学等方面进行了深入研究,部分成果曾获教育部自然科学一等奖。她是国家杰出青年科学基金获得者,上海市优秀学科带头人,现兼任中国数学会副理事长、中国数学会数学教育分会副理事长、上海市非线性科学研究会副理事长。
邀请人:孔德荣
欢迎广大师生积极参与!