报告人 :王焰金(厦门大学)
时间:2023年05月19日 16:00--
地址:理科楼LA106
摘要:Contact discontinuities of the ideal compressible magnetohydrodynamics (MHD) are most typical interfacial waves for astrophysical plasmas and prototypical fundamental waves for hyperbolic conservation laws. We prove the existence and uniqueness of MHD contact discontinuities in both 2D and 3D in Sobolev spaces without any additional conditions, which in particular gives a complete answer to the two open questions raised by Morando, Trakhinin and Trebeschi, and there is no loss of derivatives in our well-posedness theory. The solution is constructed as the inviscid limit of solutions to suitably-chosen nonlinear approximate problems for the two-phase compressible viscous non-resistive MHD. This is a joint work with Professor Zhouping Xin (CUHK).
简介:王焰金,博士,厦门大学数学科学学院教授、博士生导师。2005年本科和2011年博士毕业于厦门大学,2009.9-2010.12美国布朗大学联合培养博士,2013.9-2014.9香港中文大学博士后。主要从事流体力学方程的数学理论研究,已在Comm. Pure Appl. Math.、Comm. Math. Phy.、Arch. Ration. Mech. Anal.、Adv. Math.、J. Math. Pures Appl.等期刊上发表论文20余篇。曾获2013年度全国优秀博士学位论文奖和入选2018年度国家高层次青年人才。
邀请人:穆春来 王华桥
欢迎广大师生积极参与!