报告人 :曹健(杭州师范大学)
时间:2023年05月30日 09:00--
腾讯会议ID:490 429 785
摘要:In this talk, our investigation is focusing on q-analogue complex hypergeometric polynomials, which were motivated by Ismail and Zhang [Adv. Appl. Math. 80(2016), 70--92.] and [Trans. Amer. Math. Soc. 369(2017), 6779 -6821.]. We give a new pair of q-3D Hermite polynomials and their corresponding q-partial differential equations. In addition, we generalize (q,c)-derivative operator of Zhang [Adv. Appl. Math. 121(2020), 102081, 23pp.] and (q,\lambda)-derivative operator of Yang [Ramanujan J. 60(2023), 1127-1149.] and give some applications. Moreover, we define the generalized homogeneous Rogers--Szeg\"{o} polynomial and Stieltjes--Wigert polynomial involving two parameters in the binomial coefficient and find their corresponding q-partial differential equations. Finally, we define generalized q-3D hypergeometric polynomials with double binomial coefficients, find their corresponding q-partial differential equations and generalize some results of Ismail and Zhang.
简介:曹健,杭州师范大学教授,硕士生导师,浙江大学博士后,法国里昂第一大学访问学者,从事组合数学与特殊函数领域的研究。主持国家自然科学基金及浙江省自然科学基金等多个项目,已在本领域(Stud. Appl. Math.、Adv. Appl. Math.、Ramanujan J.等)重要学术刊物上发表30余篇SCI论文,入选杭州市属高校中青年学术带头人、杭州市“131”人才等,担任美国数学会评论员,多次在全国组合数学与图论会议、海峡两岸图论与组合数学会议、英国肯特大学及伦敦大学学院等国内外学术会议上作报告。
邀请人:傅士硕
欢迎广大师生积极参与!