报告人:张敏(北京大学)
时间:2023年06月28日 11:00--
地址:理科楼LA106
摘要:The radiative transfer equation models the interaction of radiation with scattering and absorbing media and has important applications in various fields in science and engineering. It is an integro-differential equation involving time, frequency, space, and angular variables and contains an integral term in angular directions while being hyperbolic in space. The challenges for its numerical solution include the needs to handle with its high dimensionality, the presence of the integral term, and the development of discontinuities and sharp layers in its solution along spatial directions. In this talk, we present the solution of the radiative transfer equation using an adaptive moving mesh DG method for spatial discretization together with the discrete ordinate method for angular discretization. The former employs a dynamic mesh adaptation strategy based on moving mesh partial differential equations to improve computational accuracy and efficiency. Numerical examples are presented to demonstrate the mesh adaptation ability, accuracy, and efficiency of the method. This talk is based on a joint work with Juan Cheng, Weizhang Huang, and Jianxian Qiu.
简介:张敏,北京大学大数据分析与应用技术国家工程实验室,助理研究员。2020年12月获厦门大学计算数学博士学位;2018年9月至2020年9月赴美国堪萨斯大学数学系联合培养。2021年1月至2023年4月在北京大学数学科学学院从事博士后研究,北京大学博雅博士后。主要研究兴趣包括辐射输运和浅水波方程等问题中的高精度保结构数值方法和自适应移动网格方法,在计算数学权威期刊SIAM J. Sci. Comput., J. Comput. Phys., J. Sci. Comput., Commun. Comput. Phys.等上发表论文10余篇。曾主持博士后科学基金面上资助,参与研发国产通用科学计算软件北太天元。
邀请人:王坤
欢迎广大师生积极参与!