报告人:程建峰(四川大学)
时间:2023年09月23日 09:00-
地址:理科楼LA107
摘要:In this talk, we will discuss the well-posedness of the incompressible jet flow issuing from a semi-infinitely long nozzle and moving around an obstacle. More precisely, we prove that one can find a differential pressure, such that there exists a unique solution to the incompressible jet flow, with the upper free boundary initiating smoothly from the endpoint of the nozzle wall and the lower free boundary initiating smoothly from the surface of the obstacle. Moreover, the non-existence of a finite cavity between the cavity boundary and the obstacle is established. On another side, we obtain the optimal regularity at the detachment of the lower free boundary.
简介:程建峰,四川大学数学学院教授、博士生导师。2013年本科毕业于河南大学,2019年博士毕业于四川大学,2019年至2020年香港中文大学数学科学研究所博士后。主要从事非线性偏微分方程的研究工作,在Arch. Rational Mech. Anal.、Trans. AMS、Calc. Var. PDEs、 Math. Models Methods Appl. Sci.、Ann. Inst. H. Poincaré Anal. Non Linéaire、SIAM、JDE等发表论文10余篇。入选2021年度教育部重要人才计划青年学者,主持2022年度国家重点研发计划青年科学家项目、国家自然科学基金项目2项。
邀请人:穆春来 、 王华桥
欢迎广大师生积极参与!