报告人:闫亮(东南大学)
时间:2023年09月23日 11:00-
地点:理科楼LA108
摘要:Obtaining samples from the posterior distribution of Bayesian inverse problems is a long-standing challenging, especially when the forward operator is modeled by partial differential equation (PDE). In this talk, we will discuss how to leverage the deep learning’s capabilities to tackle this challenge. Several fast and efficient deep neural network (DNN)-based approaches for accelerating simulations in sample generation will be described. A novel framework based on invertible neural networks using normalizing flow is also demonstrated.
简介:闫亮,东南大学数学学院博士生导师。主要从事不确定性量化、贝叶斯建模与计算、反问题以及科学机器学习的研究。2017年入选江苏省高校“青蓝工程”优秀青年骨干教师培养对象,2018年入选东南大学首批“至善青年学者”(A层次)支持计划。2021年获得东南大学首届“杰出教学奖”-教学新秀奖。已经在《SIAM J. Sci. Comput.》、《Inverse Problems》、《J. Comput. Phys.》、《Comput. Meth. Appl. Mech. Eng.》等国内外刊物上发表30余篇学术论文.
邀请人:邱越
欢迎广大师生积极参与!