报告人:陈双(华中师范大学)
时间:2023年12月06日 16:00-
地点:理科楼LA107
摘要:In this talk, I will introduce our recent results on the destabilization of synchronous periodic solutions for general patch-models with cross-diffusion-like couplings. In order to specify the problem and provide significant results, we focus on synchronous periodic solutions bifurcating from center-type equilibria, periodic solutions and double homoclinic loops. For the first two cases, the destabilization is determined by period functions associated with bifurcating periodic solutions. For the last case, the destabilization is determined by the characteristic function, which is derived by the Lyapunov-Schmidt reduction method.
简介:陈双,华中师范大学副研究员,2018年获得四川大学理学博士学位,2021年8月至今在华中师范大学数学与统计学学院工作。主要从事微分方程与动力系统的研究工作,包括微分方程分支理论和几何奇异摄动理论等。在JDE, Physica D, JDDE, DCDS-A等杂志发表十多篇SCI论文。
邀请人:朱长荣
欢迎广大师生积极参与!