报告人:王维克(上海交通大学)
时间:2023年12月22日 09:30-
地址:理科楼LA106
摘要:we introduce both parabolic-elliptic Patlak-Keller-Segel model and parabolic-parabolic Patlak-Keller-Segel model in the background of a Couette flow with spatial variables in R^3. It is proved that for both parabolic-elliptic and parabolic-parabolic cases, a Couette flow with a sufficiently large amplitude prevents the blow-up of solutions. This result is totally different from either the classical Patlak-Keller-Segel model or the case with a large shear flow and the periodic spatial variable x; for those two cases, the solution may blow up. Here, we apply Green’s function method to capture the suppression of blow-up and prove the global existence of the solutions.
简介:王维克,上海交通大学数学科学学院特聘教授,上海自然科学院常务副经理,上海工业与应用数学会监事长,国际数学杂志《CPAA》合作主编。曾主持获得上海市自然科学一等奖,上海高校教学名师奖,主讲的课程《数学之旅》遴选为国家精品在线课程。
邀请人:穆春来
欢迎广大师生积极参与!