报告人:高金城 (中山大学)
时间:2023年12月24日 10:00-
地址:理科楼LA106
摘要:In this paper, we investigate the well-posedness theory and exponential stability for the inhomogeneous incompressible Navier-Stokes equation with only horizontal dissipative structure. Due to the lack of the vertical dissipative term and appearance of vacuum, it is a highly challenging tricky problem for us to study the well-posedness, stability and large-time behavior problems in two-dimensional whole space. The local-in-time well-posedness theory is successfully established at first because we develop some good estimates for the density and vorticity to control the nonlinear term. Finally, these good estimates of density and vorticity help us establish the global-in-time well-posedness and exponential stability if the initial velocity is suitable small.
简介:高金城,中山大学数学学院副教授,主要从事流体力学相关方程的理论与应用研究,在时间衰减估计、适定性和粘性消失极限方程取得了一些好的成果,相关论文发表在Calc. Var. Partial Differential Equations,Ann. Inst. H. Poincaré C Anal. Non Linéaire, Phys. D,J. Differential Equations等杂志上。先后主持和参与了国家重点研发项目、国家自然科学基金青年项目、国家博士后基金项目和广东省基金项目。
邀请人:穆春来 王华桥
欢迎广大师生积极参与!