报告人:张树诚(重庆理工大学/台湾大学)
时间:2024年05月28日 09:30-
地址:理科楼LA103
摘要:Let M be a compact sasakian manifold of dimension five in which there always exists a quasi-regular Sasakian structure. In this talk, we derive the uniform L⁴-bound of the conic Sasaki-Ricci curvature along the conic Sasaki-Ricci flow on such a compact log Fano Sasakian manifold M of dimension five. We show that any solution of the conic Sasaki-Ricci flow converges in the Cheeger-Gromov sense to the unique orbifold conic Sasaki-Ricci soliton which is a circle orbibundle over a conic Kahler-Ricci soliton on a log del Pezzo orbifold surface. In particular, the conic Sasaki-Ricci soliton is conic Sasaki-Einstein if M is transverse log K-Polystable.
In sum, we show that there exists an orbifold conic Sasaki-Ricci soliton on any compact quasi-regular log Fano Sasakian manifold of dimension five. This is a jointed work with Fengjiang Li, Chien Lin and Chin-Tung Wu.
简介:张树城教授目前为重庆理工大学数学科学研究中心特聘教授和台湾大学退休荣誉教授。1990年毕业于美国莱斯大学,从2008年起担任台大数学科学中心几何分析顶尖研究计划主持人。投入顶尖研究及培育了多位优秀的博士生。从事微分几何及几何分析的研究工作,在JDG, Math. Ann., Crelle's, IMRN, CAG, Calc. Var. PDE, Trans. AMS, IUMJ, JGA, Math. Z. 等杰出数学期刊发表科学论文70余篇;并因在柯西黎曼几何与佐佐木几何的有着出色的研究,于2015年荣获台湾教学会学术特殊奖。
邀请人:周恒宇
欢迎广大师生积极参与!