当前位置: 首页 > 新闻中心 > 学术活动 > 正文

A complete classification of shuffle groups

发布日期:2024-06-07点击数:

报告人:张军阳(重庆师范大学)

时间:2024年06月17日 09:30-

地址:理科楼LA103


摘要:For positive integers k and n, the shuffle group Gk,kn is generated by the k! permutations of a deck of kn cards performed by cutting the deck into k piles with n cards in each pile, and then perfectly interleaving these cards following certain order of the k piles. For k=2, the shuffle group G2,2n has been determined by Diaconis, Graham and Kantor in 1983. The Shuffle Group Conjecture states that, for general k, the shuffle group Gk,kn contains Akn whenever k is not 2 or 4 and n is not a power of k. In particular, the conjecture in the case k=3 was posed by Medvedoff and Morrison in 1987. The only values of k for which the Shuffle Group Conjecture has been confirmed so far are powers of 2, due to recent work of Amarra, Morgan and Praeger based on Classification of Finite Simple Groups. In this talk, I introduce our recent work on confirming the Shuffle Group Conjecture for all cases using results on 2-transitive groups with elements of large fixed point ratio. This is a joint work with Binzhou Xia, Zhishuo Zhang and Wenying Zhu.


简介:张军阳,重庆师范学副教授,主要研究领域为有限群论与组合数学。2012年毕业于都师范学数学科学学院,获理学博学位。今已在 J. Combin. Theory Ser. AEuropean J. Combin.J. Group TheoryDesigns, Codes and Cryptography等国际SCI期刊上公开发表论文20余篇。已完成国家然科学基青年基1项,参与国家然科学基⾦⾯上项2项。


邀请人:傅士硕


欢迎广大师生积极参与!



关于我们
太阳成集团tyc539的前身是始建于1929年的太阳成集团理学院和1937年建立的太阳成集团商学院,理学院是太阳成集团最早设立的三个学院之一,首任经理为数学家何鲁先生。