报告人:郭坤宇(复旦大学)
时间:2024年07月17日 10:30
地址:理科楼 LA103
摘要:This talk concerns the relationship between contractive projections and conditional expectations on closed subspaces X of Lp with 0 < p <∞, focusing specifically on the case where X are the Hardy spaces. Our main result states that, subject to certain mild conditions, every contractive projection P on X that preserves constants coincides with a conditional expectation on L∞ ∩ P−1(L∞). We also illustrate some applications concerning contractive coefficient multipliers for analytic function spaces, including the Bergman spaces with radical weights. In particular, these findings lead to a characterization of contractive coefficient multipliers for Hardy spaces on torus Hp(Td) with 0 < p < 1, which complements a remarkable result due to Brevig, Ortega-Cerda, and Seip characterizing such multipliers on Hp(Td) for 1 ≤ p ≤ ∞. This is a joint work with X. Fu and D. Li.
简介:郭坤宇,复旦大学特聘教授、上海数学中心谷超豪研究所长聘教授。长期从事基础数学的教学和科研工作,在国际知名数学期刊发表论文 90多篇: 其中包括JFA(13篇)、Crelle’s Journal(3篇)、Adv. Math. (3篇) 等; 国外出版专著2部(Lecture Notes in Math; π-Research Notes in Math.), 在学术界产生了重要的影响。发展的思想、方法被学界同行称为 “郭方法”; “郭引理”;“郭-稳定性”; “郭-王定理”;“郭-王恒等式”等。 解决了算子理论中多个困难的问题,形成了复旦大学算子理论研究特色,国际同行称为“复旦学派”。2005年获国家杰出青年科学基金、2006年被聘为教育部长江学者特聘教授。先后两次获上海市自然科学奖一等奖(均为第一完成人)。曾任复旦大学数学科学学院经理、非线性数学模型与方法教育部重点实验室主任,现为第十四届全国政协委员。
邀请人:数学研究中心
欢迎广大师生积极参与!